Combinatorial Proofs of Hook Generating Functions for Skew Plane Partitions

نویسنده

  • Bruce E. Sagan
چکیده

Sagan, B.E., Combinatorial proofs of hook generating functions for skew plane partitions, Theoretical Computer Science 117 (1993) 273-287. We provide combinatorial proofs of two hook generating functions for skew plane partitions. One proof involves the Hillman-Grass1 (1976) algorithm and the other uses a modification of Schiitzenberger’s (1963, 1977) “jeu de taquin” due to Kadell (to appear). We also provide a bijection showing directly that these two generating functions are equal. Analogous results for skew shifted plane partitions are proved. Finally, some open questions are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hook Formulas for Skew Shapes II. Combinatorial Proofs and Enumerative Applications

The Naruse hook-length formula is a recent general formula for the number of standard Young tableaux of skew shapes, given as a positive sum over excited diagrams of products of hook-lengths. In [MPP1] we gave two different q-analogues of Naruse’s formula: for the skew Schur functions, and for counting reverse plane partitions of skew shapes. In this paper we give an elementary proof of Naruse’...

متن کامل

Generating functions for shifted plane partitions

With the help of a tableaux method, determinant formulas for trace generating functions for various classes of shifted plane partitions are derived. Proceeding from these determinants, generalizations of Gansner's (J. hook formulas for shifted plane partitions and alternative proofs of recent results of Proctor about alternating trace generating functions are given.

متن کامل

Plane Partitions

Throughout our study of the enumeration of plane partitions we make use of bijective proofs to find generating functions. In particular, we consider bounded plane partitions, symmetric plane partitions and weak reverse plane partitions. Using the combinatorial interpretations of Schur functions in relation to semistandard Young tableaux, we rely on the properties of symmetric functions. In our ...

متن کامل

Hook Formulas for Skew Shapes

The celebrated hook-length formula gives a product formula for the number of standard Young tableaux of a straight shape. In 2014, Naruse announced a more general formula for the number of standard Young tableaux of skew shapes as a positive sum over excited diagrams of products of hook-lengths. We give an algebraic and a combinatorial proof of Naruse’s formula, by using factorial Schur functio...

متن کامل

The Borwein conjecture and partitions with prescribed hook differences

Peter Borwein has conjectured that certain polynomials have non-negative coefficients. In this paper we look at some generalizations of this conjecture and observe how they relate to the study of generating functions for partitions with prescribed hook differences. A combinatorial proof of the generating function for partitions with prescribed hook differences is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 117  شماره 

صفحات  -

تاریخ انتشار 1993